160 research outputs found

    Democratic Supersymmetry

    Full text link
    We present generalisations of N-extended supersymmetry algebras in four dimensions, using Lorentz covariance and invariance under permutation of the N supercharges as selection criteria.Comment: 26 pages, latex fil

    Self-duality in Generalized Lorentz Superspaces

    Get PDF
    We extend the notion of self-duality to spaces built from a set of representations of the Lorentz group with bosonic or fermionic behaviour, not having the traditional spin-one upper-bound of super Minkowski space. The generalized derivative vector fields on such superspaces are assumed to form a superalgebra. Introducing corresponding gauge potentials and hence covariant derivatives and curvatures, we define generalized self-duality as the Lorentz covariant vanishing of certain irreducible parts of the curvatures.Comment: 6 pages, Late

    Hidden Symmetries of the Principal Chiral Model Unveiled

    Get PDF
    By relating the two-dimensional U(N) Principal Chiral Model to a simple linear system we obtain a free-field parametrisation of solutions. Obvious symmetry transformations on the free-field data give symmetries of the model. In this way all known `hidden symmetries' and B\"acklund transformations, as well as a host of new symmetries, arise.Comment: 21 pages, Latex. A sentence and citation adde

    Supersymmetric Lorentz-Covariant Hyperspaces and self-duality equations in dimensions greater than (4|4)

    Get PDF
    We generalise the notions of supersymmetry and superspace by allowing generators and coordinates transforming according to more general Lorentz representations than the spinorial and vectorial ones of standard lore. This yields novel SO(3,1)-covariant superspaces, which we call hyperspaces, having dimensionality greater than (4|4) of traditional super-Minkowski space. As an application, we consider gauge fields on complexifications of these superspaces; and extending the concept of self-duality, we obtain classes of completely solvable equations analogous to the four-dimensional self-duality equations.Comment: 29 pages, late

    Matryoshka of special democratic forms

    No full text

    Hyperkähler cones and instantons on quaternionic Kähler manifolds

    No full text
    We present a novel approach to the study of Yang-Mills instantons on quaternionic Kähler manifolds, based on an extension of the harmonic space method of constructing instantons on hyperk\"ahler manifolds. Our results establish a bijection between local equivalence classes of instantons on quaternionic Kähler manifolds M and equivalence classes of certain holomorphic maps on an appropriate SL_2(C)-bundle over the Swann bundle of M

    Special complex manifolds

    Full text link
    We introduce the notion of a special complex manifold: a complex manifold (M,J) with a flat torsionfree connection \nabla such that (\nabla J) is symmetric. A special symplectic manifold is then defined as a special complex manifold together with a \nabla-parallel symplectic form \omega . This generalises Freed's definition of (affine) special K\"ahler manifolds. We also define projective versions of all these geometries. Our main result is an extrinsic realisation of all simply connected (affine or projective) special complex, symplectic and K\"ahler manifolds. We prove that the above three types of special geometry are completely solvable, in the sense that they are locally defined by free holomorphic data. In fact, any special complex manifold is locally realised as the image of a holomorphic 1-form \alpha : C^n \to T^* C^n. Such a realisation induces a canonical \nabla-parallel symplectic structure on M and any special symplectic manifold is locally obtained this way. Special K\"ahler manifolds are realised as complex Lagrangian submanifolds and correspond to closed forms \alpha. Finally, we discuss the natural geometric structures on the cotangent bundle of a special symplectic manifold, which generalise the hyper-K\"ahler structure on the cotangent bundle of a special K\"ahler manifold.Comment: 24 pages, latex, section 3 revised (v2), modified Abstract and Introduction, version to appear in J. Geom. Phy

    Killing spinors are Killing vector fields in Riemannian Supergeometry

    Full text link
    A supermanifold M is canonically associated to any pseudo Riemannian spin manifold (M_0,g_0). Extending the metric g_0 to a field g of bilinear forms g(p) on T_p M, p\in M_0, the pseudo Riemannian supergeometry of (M,g) is formulated as G-structure on M, where G is a supergroup with even part G_0\cong Spin(k,l); (k,l) the signature of (M_0,g_0). Killing vector fields on (M,g) are, by definition, infinitesimal automorphisms of this G-structure. For every spinor field s there exists a corresponding odd vector field X_s on M. Our main result is that X_s is a Killing vector field on (M,g) if and only if s is a twistor spinor. In particular, any Killing spinor s defines a Killing vector field X_s.Comment: 14 pages, latex, one typo correcte
    corecore